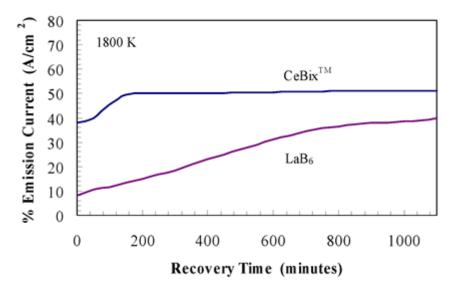

# Comparing Lanthanum Hexaboride (LaB<sub>6</sub>) and Cerium Hexaboride (CeB<sub>6</sub>) Cathodes

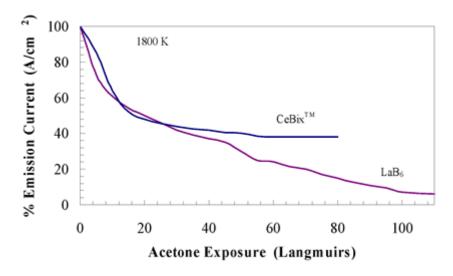
#### #80920 - 80933

The performance and lifetime of the hexaboride cathode are determined by several factors: vacuum level, cathode temperature, impurity level, crystal orientation, tip shape, and mount design.

### CeB<sub>6</sub> exhibits a lower evaporation rate


 $CeB_6$  has an evaporation rate at normal operating temperatures near 1800 K that is lower than that of  $LaB_6$ . So long as care is taken to operate the cathode below 1850 K,  $CeB_6$  should maintain an optimum tip shape longer, and therefore last longer.



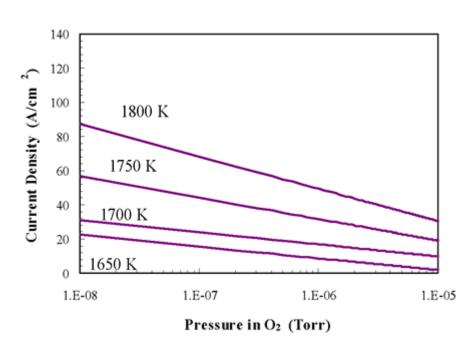

Evaporation Rate Comparison for LaB6 and CeBix™ at 2 x 10-8 Torr

#### CeB<sub>6</sub> is more resistant to carbon contamination

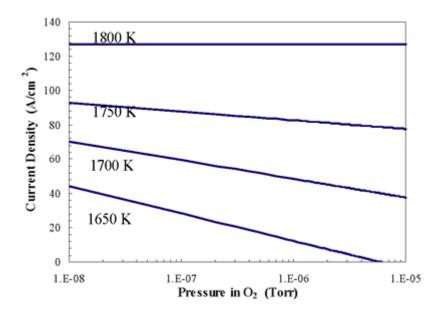
In laboratory tests,  $CeB_6$  has proven to be more resistant to the negative impact of carbon contamination than  $LaB_6$ . This increases stability and results in less time to reach stable operation and more rapid recovery from contamination events.



Recovery from Carbon Contamination Comparison between LaB6 and CeBix™




Carbon Contamination Comparison between LaB<sub>6</sub> and CeBix™


## Reduced effects of O<sub>2</sub> on CeBix™

The effects on oxygen on current density is shown in the figures below for LaB<sub>6</sub> and CeBix™.

 $LaB_6$ 



# $CeBix^{TM}\\$



# Material Data for LaB<sub>6</sub> and CeB<sub>6</sub>

| Parameter                                  | Units                | LaB <sub>6</sub>       | CeB <sub>6</sub>       |
|--------------------------------------------|----------------------|------------------------|------------------------|
| Stoichiometry                              | N/A                  | ~6                     |                        |
| Metal Impurities                           | ppm by wt.           | <30                    |                        |
| Density                                    | g/cm <sup>3</sup>    | 4.72                   | 4.80                   |
| Coefficient of Thermal Expansion           | α x 106              | 5.6                    | 6.2                    |
| Electrical Resistivity                     | μΩ-cm                | ~50                    | ~65                    |
| Effective Work Function (100) at 1800 K    | eV                   | 2.70                   | 2.65                   |
| Spectral Emissivity at 0.65 microns        | N/A                  | 0.765                  | 0.779                  |
| Evaporation rate at 1800 K (UHV)           | g/cm <sup>2</sup> /s | 2.2 x 10 <sup>-9</sup> | 1.6 x 10 <sup>-9</sup> |
| Orientation limit for specific orientation | degrees              | <2                     |                        |
| Pyrolitic block mount resistance @ 1800 K  | Ohms                 | 1.45                   |                        |